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Abstract

Electronic ion energy loss calculations on the basis of the binary encounter approximation are presented for protons

in oxygen, nitrogen and silicon. Calculations using both an analytical approach as well as a Monte Carlo approach are

found to agree well with experimental data even down to energies below the stopping cross section maximum. Energy

loss calculations for protons in silicon under channeling conditions are included and predictions are made for chan-

neling in the h1 1 0i direction at low energies (5±500 keV). Ó 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Theoretical advances in the description of fast-par-

ticle energy loss rates are of fundamental importance for

improving the basic understanding of a variety of ion±

solid interactions such as plasma±ion sputtering and ion

implantation [1,2]. The energy loss rate experienced by

fast particles as they traverse a medium is commonly

characterized by the stopping power of the medium.

Stopping power theory has been developed to a large

extent considering fast-particle transport through a

plasma of free target particles. Theoretical approaches

which have been used include the collective dielectric

response of the medium [3], kinetic equations [4±7], and

the binary encounter approximation [8±10]. Although

collective dielectric response calculations of the stopping

power can be fairly accurate within a limited range of

fast-particle energies (e.g. for protons above the stop-

ping power maximum), normally, it is not simulta-

neously accurate (within, say, 10%) above, at, and below

the stopping cross section maximum [3]. Kinetic equa-

tion approaches, which include use of the Fokker±

Planck [4,5], Lenard±Balescu and Boltzmann equations

[6,7] have primarily been used for describing charged-

particle transport processes in non-degenerate plasmas.

Use of the binary encounter approximation for evalu-

ating stopping powers is discussed from a historical

perspective in Ref. [8]. An important improvement in

using the binary encounter approximation for evaluat-

ing the stopping power of a medium has been to include

the velocity distribution of particles in the medium

[9,10]. The present work represents an extension of these

and other existing binary encounter approximation

works referenced below as applied to calculating elec-

tronic ion energy loss rates about the stopping cross

section maximum.

The binary encounter approximation provides a rel-

atively simple approach for evaluating the average en-

ergy loss, dE, experienced by a point particle, a

projectile, while traveling a path length, dl, through a

system of non-interacting, point, target particles. Spe-

ci®cally, a many-body interaction is modeled as a pro-

gression of binary interactions. (A detailed discussion of

this simpli®cation is given in Ref. [11].) It is convenient

to use the energy loss and path length for de®ning the

stopping power, dE/dl, and the energy loss rate, dE/dt.
The de®nitions are needed below. They are

dE
dt
� dE

dt
; �1�
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dE
dl
� dE

dl
: �2�

Here, dt � dl=v1, is the time it takes the projectile to

travel the path length, dl at an average speed, v1.

The rest of this paper consists of the following. In

Section 2, two di�erent relations used in prior work for

the stopping power of a system of non-interacting target

particles are derived simultaneously in order to show

their previously unrecognized similarity. The funda-

mental assumptions which lead to their di�erences are

described and discussed. In Section 3, a derivation for a

new binary-encounter stopping cross section is given

and comparisons between the developed theory, existing

theory, and experimental data are shown. In Section 4, a

new Monte Carlo approach for calculating the stopping

cross section is presented. The Monte Carlo approach

represents an improvement over the analytical approach

in the way that binary energy transfers are taken into

account. Concluding remarks are found in Section 5.

2. Energy loss to a system of non-interacting target

particles

De®ning an `encounter' cross section as rmax � pb2
max,

a projectile is considered to experience energy transfer

with a target particle only when their separation be-

comes smaller than bmax. Suppose the target particles

form a homogeneous and isotropic distribution within

con®guration space with all target particles at rest. Since

all encounters with target particles are assumed to occur

successively, the energy loss, dE, experienced by the

projectile can be written as

dE � N
1

N

XN

i�1

DEi � NhDE�b�ib; �3�

where DEi is the energy transfer associated with the ith

encounter, N the number of encounters the projectile

experiences while traveling a path length dl, and hDEi
the average energy transfer per encounter. The binary

energy transfer, DE, which occurs between the projectile

and a target particle at rest depends on the impact pa-

rameter, b, of the encounter. For clarity, the subscript

on the average is used to indicate which parameter is

averaged over. De®ning a sphere of radius, bmax, cen-

tered at the projectile, N equals the number of target

particles which pass through the forward surface of the

sphere as a result of the forward motion of the projectile

over a path length, dl. Thus, N � nrmaxdl, where n is the

density of target particles, and, in terms of the time

length, dt � dl=v1,

N � dt nrmax v1: �4�
Consequently, with Eq. (3), the energy loss is

dE � dt nrmaxv1 hDE�b�ib: �5�

Now suppose that all target particles have the same

velocity, v2. In this case, the number of encounters the

projectile experiences is evaluated in the rest frame of

the target particles and then a transformation is made to

the laboratory frame of reference. In terms of the rela-

tive speed, u � jv1 ÿ v2j, between the projectile and the

target particles, the number of encounters experienced

by the projectile during a time, dt, in the laboratory

frame is

N � dt nrmaxu: �6�
The energy loss per encounter is now written as an ex-

plicit function of the target-particle velocity in order to

indicate v2 is not zero:

dE � NhDE�v2; b�ib: �7�
With Eqs. (6) and (7), the energy loss is

dE � dt nrmaxu hDE�v2; b�ib: �8�
If a di�erential group of target particles in the system

have the same velocity, v2, and these target particles are

uniformly distributed with density, dn, the di�erential

number of encounters the projectile experiences with

these target particles during a time, dt, is, according to

Eq. (6), dN � dtdnrmaxu. With the target-particle veloc-

ity distribution function, f �v2�, normalized to unity,

dn � nd3v2f �v2�, and with Eq. (7),

dE � dN hDE�v2; b�ib
� dt n d3v2f �v2�rmaxu hDE�v2; b�ib: �9�

The total energy loss of the projectile during a time, dt, is

evaluated by integrating over three-dimensional velocity

space,

dE � dt n rmax

Z
d3v2f �v2� uhDE�v2; b�ib

� dt n rmax huhDE�v2; b�ibiv2
: �10�

Dividing through by dl, utilizing v1 � dl=dt, and using

Eq. (2) provides

dE
dl
� n rmax

u
v1

hDE�v2; b�ib
� �

v2

: �11�

For all of the above, the target particles are assumed

to have a homogeneous and isotropic distribution in

con®guration space. This assumption is now removed

and, instead, a homogeneous and isotropic distribution

of ®xed, spherically-symmetric potential wells in con-

®guration space is considered. Within each potential

well, a single target particle is locally bound. When the

projectile passes through a potential well, the projectile

is assumed to have su�cient energy so that the back-

ground potential which forms the potential well has a

negligible e�ect on its motion. It is assumed that, as the

separation between the projectile and a target particle

decreases to less than bmax and an encounter occurs, the
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interaction between the projectile and the target particle

is dominant. The velocity of a target particle at the in-

stant its separation from the projectile decreases to bmax

is, v2, the target-particle velocity going into the binary

encounter. Evaluation of the di�erential number of en-

counters associated with target particles having velocity,

v2, is complicated because dN depends on the ``width'' of

each potential well within which each target particle is

con®ned. First, the width of each potential well shall be

considered to be much smaller than bmax. Thus, de®ning

a sphere of radius, bmax, centered at the projectile, dN
equals the di�erential number of potential wells, each

containing a target particle, which pass through the

sphere as the projectile travels a path length, dl. Since

the potential wells are at rest, Eq. (4) provides the dif-

ferential number of encounters associated with target

particles having velocity, v2: dN � dt dn rmaxv1 �
dt n rmaxv1d3v2f �v2�. Since the width of each potential

well is considered to be much smaller than bmax, the in-

homogeneity in the spacial probability density of target

particles is statistically accounted for in the evaluation

of dN and Eq. (7) continues to apply. Using Eq. (7)

provides

dE � dt n rmaxv1hDE�v2; b�iv2 ;b
: �12�

Dividing through by dl, utilizing v1 � dl=dt, and using

Eq. (2) provides

dE
dl
� n rmaxhDE�v2; b�iv2 ;b

: �13�

Eq. (11) was used in Ref. [9] while Eq. (13) was used

(without giving a derivation) in Refs. [12,13]. Eq. (13)

provides a step toward taking into account (on the basis

of the binary encounter approximation) the fact that

certain target particles do not have a homogeneous

spacial distribution. These target particles include bound

electrons in solids as well as electrons forming gas atoms

and molecules (with the speeds of binding nuclei as-

sumed much smaller than the projectile speed). Unfor-

tunately, generalization to potential well widths of

arbitrary size is a formidable problem and does not

appear possible. Thus, for stopping power calculations

based on the binary encounter approximation, this

leaves Eq. (11) which considers free target particles and

Eq. (13) which takes into account a spatial inhomoge-

neity by considering the target particles to be trapped in

®xed spacial regions which are much smaller than the

encounter cross section.

Eqs. (11) and (13) are to be applied to each electron

component of a target. (Here, `electron component' re-

fers to speci®c groups of electons in the target. For an

elemental target of atomic number Z2, the total elec-

tronic stopping power is the summation of stopping

power contributions from Z2 electron components).

Eqs. (11) and (13) are equivalently written as stopping

cross sections, S � nÿ1dE=dl. They are

S �
Z

d3v2f �v2� u
v1

Z
dr DE; �14�

S �
Z

d3v2f �v2�
Z

dr DE; �15�

where dr is the di�erential of the encounter cross sec-

tion.

3. Binary-encounter stopping cross sections

With Eq. (14), a stopping cross section relation, re-

ferred to here as a binary-encounter stopping cross

section, is derived in Ref. [9] which can be written as

S �
Z

d3v2f �v2� u
v1

m2v1 � u
mru2

ÿ m2

m1

� �
S0�u�: �16�

Here, S0�v1� is the stopping cross section in the high

velocity limit �v1 � v2�, and mr � m1m2=�m1 � m2� is the

reduced mass of the two-particle system, with m1, the

projectile mass, and m2, the target particle mass. A bi-

nary-encounter stopping cross section can also be de-

rived for Eq. (15). A relation for the energy transferred

from a projectile to a target particle in an elastic colli-

sion is needed. It is

DE � 2mr v1 � uÿ mr

m1

u2

� �
sin2 hc

2

� �
ÿ mrjv1v2j sin hc

�17�
where hc is the center-of-mass scattering angle in the

plane of the collision with values between p and ÿp.

When Eq. (17) is substituted into Eq. (15),

S � mr

Z
d3v2f �v2� v2

1 ÿ v1 � v2 ÿ mr

m1

u2

� �
r1�u� �18�

results where

r1�u� � 2

Z
sin2 hc

2

� �
dr: �19�

Note that the last term in Eq. (17) does not appear be-

cause it vanishes when integrated over the azimuthal

angle. (The di�erential cross section dr is considered to

have azimuthal symmetry.) In the limit, v1 � v2, the

stopping cross section becomes

Sv1�v2
� � � S0�v1� � m2

r v2
1r

1�v1�
m2

� 2m2
r v2

1

m2

Z
sin2 hc

2

� �
dr: �20�

Substituting u for v1 in this equation, solving for r1, and

substituting it in Eq. (18) provides

S �
Z

d3v2f �v2� m2v1 � u
mru2

ÿ m2

m1

� �
S0�u� �21�
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which only di�ers from Eq. (16) by the factor, �u=v1�,
within the velocity integral. Both relations give the same

result at high projectile speeds, since if

v1 � v2; �u=v1� ! 1. Consequently, only near and below

the stopping power maximum will the two results di�er

by an appreciable amount.

For evaluating the high-speed stopping cross section,

the center-of-mass scattering angle in a non-relativistic

binary Coulomb collision is used. Thus,

sin2 hc

2

� �
� 1

1� 4b2=r2
0

; �22�

where r0 � 2e2Z1=mru2 becomes 2e2Z1=mrv2
1 for v1 � v2.

Here, e is the magnitude of an electron's charge and Z1 is

the atomic number of the projectile. Putting Eq. (22)

into Eq. (20) with dr � 2pb db and integrating up to a

maximum impact parameter, bmax, gives

S0�v1� � 4pe4Z2
1

m2v2
1

ln

�������������������
1� 4b2

max

r2
0

s !
: �23�

The only unknown parameter in this equation is bmax,

the scale length over which the projectile passes non-

adiabatically. Since the projectile speed is large, Eq. (23)

can be simpli®ed to

S0�v1� � 4pe4Z2
1

m2v2
1

ln
2bmax

r0

� �
: �24�

This is, in fact, the Bethe expression for the stopping

cross section in the high (but non-relativistic) velocity

limit when bmax � 2e2Z1=U where U is the minimum

excitation energy. Using this value of bmax, Eq. (23) is

written as

S0�v1� � 4pe4Z2
1

m2v2
1

ln

������������������������������
1� 2mrv2

1

U

� �2
s24 35: �25�

It is convenient to separate the target particle's ve-

locity into parallel �k� and perpendicular �?� compo-

nents with respect to the direction of travel of a

projectile just prior to an encounter. Doing this allows

the stopping cross section to be written in terms of a

double integral which can be evaluated numerically.

(Hence, the asymptotic approximations performed in

previous binary encounter approximation work are not

used here.) Inserting Eq. (25) with v1 ! u into Eqs. (16)

and (21) and rearranging provides

S � 4pe4Z2
1

mr

Z
dv2?dv2kh�v2?; v2k�w�u�u4

� v2
1 ÿ v1v2k ÿ mr

m1

u2

� �
ln

������������������������������
1� 2mrv2

1

U

� �2
s24 35;

�26�
where w�u� � u=v1 corresponds to Eq. (16) while

w�u� � 1 corresponds to Eq. (21). Here, f �v2�d3v2 �

h�v2?; v2k�dv2?dv2k and u �
����������������������������������������������
v2

1 � v2
2? � v2

2k ÿ 2v1v2k
q

.

One shortcoming with Eq. (26) is that integration over

negative energy transfers takes place. This is discussed in

more detail in Section 4.

Eq. (26) can be evaluated provided both a minimum

excitation energy and a velocity distribution function are

known. For the minimum excitation energy, the relation

[14], U � �1=2�m2hv2i2, is used where hv2i is the mean

electron speed. The velocity distribution function is

needed both to evaluate the velocity integral and to

evaluate the mean electron speed. The velocity distri-

bution is determined from a ®t to Hartree±Fock

Compton pro®le values for atomic electrons provided in

Ref. [15]. A ®t of the form

J�q� � J�0�
1� �q=a3�a2� �a1

�27�

is used for the Compton pro®le with parameters a1; a2;
and a3 given in Table 1 for oxygen, silicon and nitrogen.

The normalized, isotropic distribution function is relat-

ed to the Compton pro®le by

g�v2� � ÿbv2

dJ�v2�
dv2

; �28�

where b is chosen to provide the normalization,R1
0

g�v2�dv2 � 1, with g�v2�dv2 � f �v2�d3v2. Also pro-

vided in Table 1 are values for J�0�, the root mean

square errors, �rms, associated with the ®tting pro-

Table 1

Parameters used in the stopping cross section calculations

(values in atomic units)

1s 2s 2p 3s 3p

Oxygen

J(0) 0.113 0.579 0.350

a1 2.37 4.79 1.24

a2 2.03 2.01 2.86

a3 6.45 1.87 1.37

�rms 0.00056 0.0084 0.0053

áv2ñ 6.74 1.12 2.14

Silicon

J(0) 0.0635 0.275 0.149 1.04 0.744

a1 29.0 4.00 1.37 6.18 1.92

a2 1.97 2.07 3.01 2.00 3.03

a3 13.2 3.44 3.43 1.18 0.802

�rms 0.00027 0.00073 0.0021 0.0066 0.0069

áv2ñ 11.6 2.34 4.58 0.597 0.820

Nitrogen

(a � 1.4)

J(0) 0.13 0.672 0.407

a1 2.52092 4.58492 1.22687

a2 2.01064 2.02361 2.92666

a3 5.83993 1.56547 1.17843

�rms 0.0011 0.0026 0.0062

áv2ñ 5.77603 0.96697 1.80922
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cedure, and the calculated mean electron speeds. A

transformation of coordinates in velocity space pro-

vides h�v2?; v2k� in terms of g�v2�. It is h�v2?; v2k�
� �1=2�v2?g�

������������������
v2

2? � v2
2k

q
�=�v2

2? � v2
2k�:

The results for calculations of the electronic stopping

cross section for protons traveling through oxygen are

shown in Fig. 1 along with experimental data from Refs.

[16,17]. Excellent agreement with the experimental data

is found at all energies with Eq. (26) using both ex-

pressions for w�u�. The result using w�u� � u=v1 remains

within 12% of the data while the result using w�u� � 1

remains within 6% of the data for the entire range in

energy. The close agreement between the calculations,

which use Compton pro®les determined for atomic ox-

ygen, and the experimental data, which is for molecular

oxygen, appears to indicate that the speed distributions

for the outer electrons must be similar for atomic and

molecular oxygen.

For the stopping cross section calculations for sili-

con, both channeling and non-channeling conditions

have been considered. For non-channeling conditions,

neither the use of w�u� � u=v1 nor the use of w�u� � 1

provided good agreement with experimental data near

the stopping cross section maximum. The stopping cross

section pro®le predicted using w�u� � u=v1 compared

better near and below the stopping cross section maxi-

mum where the valence band electrons contributed most

to the stopping cross section while the pro®le predicted

using w�u� � 1 compared slightly better at higher ener-

gies where K and L shell electrons contributed most to

the stopping cross section. The best results were ob-

tained by adding the stopping cross section contribution

from the K and L shells as calculated using w�u� � 1 to

the stopping cross section contribution from the valence

electrons as calculated using w�u� � u=v1. For the va-

lence electrons the minimum excitation energy had to be

®t for good agreement. The necessity of this is probably

associated with the use of an inaccurate speed distribu-

tion for the valence electrons as the Hartree±Fock

Compton pro®le used was determined for atomic silicon

electrons. The minimum excitation energy used was

Uval� 35.7 eV. The result of this combined calculation

shows good agreement with experimental data from Ref.

[18] as indicated in Fig. 2. For channeled protons in

silicon, stopping cross section calculations were carried

out and compared to data at higher energies. There

calculations show good agreement with the peak values

of transmission spectra in the h1 1 0i direction from Ref.

[19] as shown in Fig. 3. The calculations were carried

out just as for the non-channeling calculations except

that only 10% of the contribution from 2p electrons was

included and no contribution by the 1s and 2s electrons

was included. Fig. 4 shows a prediction for channeling

stopping cross section values using the same calculation

as in Fig. 3 but extending the results to much lower

energies.

4. Monte Carlo approach

In terms of a sum over energy transfers, the stopping

cross section associated with Eq. (13) is

S � 1

n
dE
dl
� 16pe4Z2

1

a2m2
2hv2i4N

XN

i�1

DEi: �29�

Fig. 1. Stopping cross section calculations for protons in oxygen. Shown are the results from numerical evaluations of Eq. (26) using

w � u=v1 (curve a) and w � 1 (curve b), and experimental data from Refs. [16,17].
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Here, bmax � 2e2Z1=U , is used along with U �
a�1=2�m2hv2i2 where a is introduced as an adjustable

parameter. The latter is equivalent to incorporating one

®tting parameter into the calculations. This provides a

means of ®tting the model to experimental results in the

high projectile-speed limit. From Eqs. (17) and (22), the

energy transfer per collision for azimuthally-symmetric

encounters is

DEi � 2mr�v2
1 ÿ v1v2k ÿ mru2=m1�

1� r=r0

; �30�

where r0 � pe4Z2
1=m2

r u4. Hence, each energy transfer is

associated with a set of values for the impact parameter

cross section, r, and the electron velocity components,

�v2?; v2k�. To calculate these values, the impact param-

eter cross section and the electron speed are sampled

from one-dimensional probability densities. For the

impact parameter cross section, the assumption of azi-

muthally random encounters relative to the projectile

direction of motion allows sampled values of r to be

easily generated as uniformly distributed random num-

bers between zero and rmax � pb2
max. Considering an

Fig. 2. Stopping cross section calculations for protons in silicon under non-channeling conditions. Interpolated experimental results

are from Ref. [18].

Fig. 3. Stopping cross section calculations for protons in silicon under h1 1 0i channeling conditions. Interpolated experimental results

are from Ref. [19].
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isotropic velocity distribution for the target electrons

allows components parallel and perpendicular to the

incident direction of the projectile to be generated from

a sampled speed, v2, using the relations [20], v2k �
v2�1ÿ 2R� and v2? � 2v2

������������������
R�1ÿ R�p

where R is a uni-

formly distributed random number between zero and

one. An acceptance/rejection sampling method is used to

sample the electron-speed probability density, g�v2�,
from Eq. (28) [20].

A problem associated with the binary encounter ap-

proach is that negative values for DEi can occur. Such is

the case when an encountered electron travels in the

direction of the projectile at a speed faster than the

projectile and transfers energy to the projectile. How-

ever, assuming that target atoms are in the ground state,

none of the electrons can transition down to lower lying

states and give up energy to the projectile. In consider-

ation of this, three di�erent calculation techniques are

compared. The ®rst, and simplest, neglects the problem

and includes negative DEi values in the calculation. This

calculation technique is the same as numerical evalua-

tion of Eq. (26) using w � 1. The result of this technique

is shown as curve (a) in Fig. 5. The second technique

resets any negative values for DEi to zero. The result of

this calculation technique is shown as curve (b) in Fig. 5.

Curve (b) is higher than curve (a) because the sum in

Eq. (29) becomes larger as a result of replacing each

negative DEi by zero. In the third technique, negative

values for DEi are rejected in the statistical summation

process. When a negative DEi value is generated, the set

of values, (r; v2?; v2k�i, is recalculated for the same

counter, i, until a positive DEi value is produced. The

result of using this third technique is shown as curve (c)

in Fig. 5. Curve (c) is higher than both curve (a) and

curve (b) because only positive, non-zero values for DEi

are included in the sum in Eq. (29). Also shown in Fig. 5

is experimental data from Refs. [16,17]. The results of all

three calculation techniques agree well with the experi-

mental data and are di�erent from each other only near

and below the stopping power maximum. Of the three,

the third technique provides the best agreement with the

experimental data with only a slight under-prediction of

the stopping power (by, at most, 6%).

Fig. 4. Stopping cross section predictions for protons in silicon under h1 1 0i channeling conditions.

Fig. 5. The stopping cross section for protons in nitrogen. The

results for calculations are shown along with experimental data

[16,17]. For curve (a), numerical evaluation of Eq. (26) with

w � 1 is used which includes integration over negative DEi

values. For curve (b), negative DEi values are reset to zero. For

curve (c), each negative DEi value is recalculated and replaced

by a positive DEi value.
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5. Conclusion

A new binary-encounter stopping cross section rela-

tion has been derived and has been used along with a

previously presented binary-encounter stopping cross

section relation. The fundamental di�erence between the

two relations is the presence of a factor of u=v1. The new

binary-encounter stopping cross section relation,

Eq. (21), and that previously published, Eq. (16), only

depend on the stopping cross section in the limit of high

projectile velocity and on the velocity distribution of the

target particles. Both of the binary-encounter stopping

cross sections, which were written as a single expression

taking into account binary Coulomb collisions, were

found to accurately provide stopping powers in oxygen

(with no adjustable parameters) and in silicon (with one

adjustable parameter for non-channeling conditions and

two adjustable parameters for channeling conditions).

For the calculations of silicon stopping cross sections,

the model used agrees well with experiment at all ener-

gies in the non-channeling case and is extremely close to

available experimental channeling values at energies

above 500 keV. However, lower-energy experiments are

needed to test the channeling predictions.

A Monte Carlo based calculation of electronic stop-

ping cross sections has also been developed. Calcula-

tions for protons in nitrogen were presented and

compared to a prediction provided by Eq. (26) and to

experimental data. Of three calculation methods used,

the calculation which rejects negative energy transfers

(energy transfers from atomic electrons to the projectile)

was found to provide the best agreement with nitrogen

stopping data when a is used as a high-projectile-speed

®tting parameter.

The necessity of using ®tting parameters will have to

be eliminated for the binary encounter approximation to

represent a true theoretical (instead of semi-empirical)

approach to calculating stopping cross sections. In order

to re®ne the binary encounter approach, more accurate

electron speed distributions need to be utilized for the

outer electrons and an improved method of evaluating

the relative probabilities associated with encountering

di�erent electron components needs to be developed.
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